
Applying User Centered Design in the

Development of Systems without

User Interfaces

National Defense Industrial Association

14th Annual Systems Engineering Conference

October 27, 2011

Dr. W. David Reese, CSEP

Dr. Conrad B. Monson

Systems and Specialty Engineering

Northrop Grumman Electronic Systems

Agenda

• Human Engineering in System Acquisition

• User-Centered Design (UCD)

• System-User Interactions

• Today’s Acquisition Environment

• Evolving User Interactions – Case Studies in Missile Tracking

• UCD Principles to Consider in Systems Development

• Conclusion

2

Human Engineering in System Acquisition

3

• Human Engineering (HE) activities support the variety of system development

efforts

− Programs that begin before Milestone A and continue through Sustainment

− Programs that are developed in only one or a few of the phases (e.g., an R&D

effort that ends before Milestone B)

• Regardless of program, understanding user needs is not only key to the

success of the HE effort but is also key to the success of the program

User Needs DoD Instruction 5000.02 Mandates

Human Engineering Throughout The

System Development Life Cycle

User-Centered Design

4

Identify Tasks

Use mission and goal -oriented
task analyses, CONOPS to
develop user tasks. Ensure
architectures, requirements,
system models , etc. reflect user
operational needs and capabilities

Create Prototypes

Develop cognitive task flows or
sequences to organize display and
control elements into prototypes
with increasing levels of fidelity

Conduct Usability Tests
and Evaluations

Evaluate and tests prototypes
with users; re-design and re-test
as needed

Understand the User

What are the user goals, skills,
experience and needs?

Identify Information and
Control Needs for Task
Performance

What information does the user
need, what are the display elements
that provide that information, and
what are the controls that enable
users to act on the information?

User-Centered Design (cont.)

5

Guiding Principles of the UCD process1

• Develop displays from user goals, tasks, abilities, information

processing and decision making – don’t let the technology drive the

design

• Design systems that keep users in control and aware of the state of

the system

• Ensure extensive user involvement in the design process

• Situation Awareness (SA) is key to effective design

 “If operators can achieve a high level of SA, they will be more effective …

than if SA is denied or hard to achieve”

1Adapted from Mica Endsley, et. al. Designing for Situation Awareness, An Approach to User-Centered Design. Taylor and Francis,
London and New York, 2003.

System-User Interactions

• Autonomous Systems

− Minimal (if any) user interaction as the system functions autonomously in

performing most (if not all) of the system tasks

• Interactive Systems

− High levels of user interaction with some system functions performed

autonomously and others performed by users (who must have sufficient

situation awareness of the system to perform their tasks)

6

Highly Autonomous
Systems

Highly Interactive
Systems

http://upload.wikimedia.org/wikipedia/en/7/77/Phalanx_CIWS.jpg
http://www.as.northropgrumman.com/products/f35jsf_ctol/assets/lgm_00098501.jpg
http://upload.wikimedia.org/wikipedia/commons/c/c5/Globalhawk.750pix.jpg

Today’s Acquisition Environment for Military

Systems

−Define and develop the system from scratch

−Design, evaluate, test and refine user interactions and associated system

interfaces

• There is more extensive re-use of existing system components

− Increasing use of legacy components

−Existing systems (or components) used in new ways

• Re-use can drive different—or entirely new—user interfaces

−Re-use can change the degree of system autonomy or user interaction

−This, in turn, may surface the need for an interface where none existed previously

− User interface changes may also occur as a result of natural evolution as ―next

generation‖ systems are built

7

Systems need to cost less

 …and be fielded more rapidly

• There are fewer full cycle, system

development programs (Milestones A-C)

Acquisition strategies

are changing to meet these needs

User Interactions Evolve to Support System Reuse

• As systems evolve or are re-used, the user interaction normally changes

− Complex, highly interactive systems are made simpler with more automated

elements

− Automated, autonomous systems evolve towards more interaction with users

8

More Interaction

More Autonomy

• As a result…

─ User tasks may need to change

─ Some user interfaces might be eliminated

─ Existing user interfaces need to be updated

─ New interfaces may need to be created

http://www.as.northropgrumman.com/products/f35jsf_ctol/assets/lgm_00098501.jpg
http://upload.wikimedia.org/wikipedia/commons/c/c5/Globalhawk.750pix.jpg
http://upload.wikimedia.org/wikipedia/en/7/77/Phalanx_CIWS.jpg

Evolving User Interactions

Case Studies in Missile Tracking

• An applied research program is evaluating the utility

of new sensors and novel processing algorithms for

missile tracking

• This multi-year effort is open ended with respect to

the pipeline of new sensors and evolving algorithms

to be evaluated

9

System-User interaction trends surfaced within several Research and
Development efforts that support evolving missile defense systems

• Prototype track processing systems are used to gain confidence in results with the

most promising improvements submitted as candidates for near term

enhancements to operational systems

• A number of system-user interfaces have resulted from this program—many of

which were not originally envisioned

Evolving User Interactions

Case Studies in Missile Tracking (cont.)

10

• Utility evaluation efforts led quickly to the need for a variety of tools
− Scripting tools to automate or speed repetitive tasks

− Logging tools to record outputs and behaviors

− Simulation and playback tools to mimic external application

environments

− Analytical tools for characterizing performance

• Most tools were ad hoc creations—many were subsequently

polished for use in algorithm refinement
− Analytical tools were enhanced to generate graphical displays instead of columnar data

− Simulation and playback tools were combined to simplify time synchronization needs

• Evaluation tools were originally designed without any intended user interaction
− GUIs were sometimes added to allow junior (or less specialized) engineers to perform

certain functions

• A subset of these tools proved useful to testers and maintainers of operational

versions of the tracking systems and were further refined using more formal user

interface design techniques

Earliest user interfaces targeted testers and maintainers

Evolving User Interactions

Case Studies in Missile Tracking (cont.)

11

• The originally targeted operational system was an autonomous ―black box‖ that

generated and passed through track data within a larger system of systems
− Black box had no dedicated user or operator

− Primary system interaction was with system maintainers

− Provided rudimentary situation awareness via system’s health and status display

Had the potential need for a user interface been considered—as dictated by UCD—at the

outset of the program, better interfaces could have been designed

• Black box reuse…
− Required the development of more interactive and informative operator interfaces

− Significantly expanded need for user situation awareness

− Previously non-existent user interfaces were suddenly critical to system utility

• Some interface functionality leveraged tools or displays previously built for

software developer use
− Graphical displays (e.g., mission globe) to visualize outputs

− Numerical displays for performance cognizance

• Subsequent applications were found for the black box

as less autonomous or even stand alone systems

• Tools developed during R&D phases often had utility and potential for

reuse in later phases of system development, deployment or sustainment

• Efforts to improve black box within an operational system were not

focused on the potential for reuse and failed to consider user interfaces

that reuse might require

– Ad hoc tools continued to be developed and or used

– User interaction evolved to include system testers and maintainers

• Initial reuse of black box was within another, smaller system of systems

– Users required some Situation Awareness

– Health and status indicators needed

– User interaction remained primarily at the more aggregated System of Systems level

• Later reuse was as a stand-alone system

– User interaction with black box was now essential

– Required introduction of (previously non-existent) user interfaces

Evolving User Interaction Summary

12

• Our experiences with R&D-to-Ops development unveiled certain user

interface development trends that may be typical in other development

efforts

• The earliest interfaces tend to be informally designed and supported

development or testing

– Often evolve from simple tools and scripts

– May include visualization aids or tools—especially when performance was key

– Sometimes evolve into user interfaces for system operators or maintainers

• Initial user interfaces were oriented towards maintenance or situational

awareness tasks (e.g. system health & status)

• User interfaces targeted at system operators required significant SE

effort—especially when no operator interface was originally envisioned

(i.e. when a system or component is repurposed for other uses)

13

Evolving User Interaction Summary (cont.)

UCD Principles to Consider

in Systems Development

• Interfaces should be designed from user goals, tasks, abilities,

information processing and decision making needs and abilities

– Don’t let the technology drive the interface design

• System-user interfaces evolve over time

• Potential user interface needs or changes should be considered early

in the design process—avoid designs that prevent interface changes

or insertions

• Consider that user interfaces may involve a variety of users including

– Developers

– Maintainers

– Testers

– Operators / warfighters

– Users of other, larger systems

14

• Today’s acquisition environment makes component or system reuse

more likely

• Sometimes component or system reuse may be accomplished by

changes to user tasking without changes to user interfaces

− Understanding system user’s goals, skills, experience and needs – a key

principle of UCD – could generate new or modified user tasks for component

or system reuse that don’t require a new or modified interface

• In many cases, there may be a need for interfaces that:

– Support different kinds of users (developers, maintainers, testers, end users)

– Provide a different degree of user interaction

– Impart a different level of situation awareness (perception vs. comprehension

of system operation or perhaps a projection of future system operations)

– Are entirely new—where none had existed before (―exposed black box‖)

15

UCD Principles to Consider

in Systems Development (cont.)

• Providing sufficient level of SA can ―make or break‖ the operator or

maintainer of a reused system or system component. Consider these

requirements for SA in reuse1

– Perception level: the user perceives the status, attributes, and dynamics

of system elements

– Comprehension level: the user integrates information to understand

impacts upon system goals and objectives

– Projection level: the user can project future impacts on system operations

• A reused system operating with high levels of autonomy may not even

have a user interface… SA must still be provided so that

– System health and status is understood

– Over- or under-reliance on automation is avoided

– User actions can be taken when the automation enabling the autonomy

degrades or fails

16

1Adapted from Mica Endsley, et. al. Designing for Situation Awareness, An Approach to User-Centered Design. Taylor and Francis, London
and New York, 2003.

UCD Principles to Consider

in Systems Development (cont.)

Conclusion

• Today’s evolving Acquisition Environment requires system components to
evolve or get repurposed for other uses…and the user interface needs to
evolve as well

• Case studies indicate there are potential efficiencies in planning for, or
incorporating user interface ―hooks‖ in designs to increase extensibility

– Simplifies the future insertion of interfaces if and when ultimately needed

– May enable leveraging of informal tools

• All systems interact with users at one or more levels

– Developers, testers, maintainers…

– End users at the System of Systems level

• With increased system re-use, applying User Centered Design principles
to systems without user interfaces should become an increasingly
important element of a modern day system development process

17

Backup

18

Design Processes Can Support Evolving User

Interactions

• Systems designed with Modular Open Systems Approach (MOSA)

– Are interoperable

– Support component re-use

– Allow easy insertion of new capabilities (including insertion of user interfaces)

• Systems defined by DoDAF architectures include users in ―viewpoints‖

• Use Cases showing interactions between elements of a system, the

―Actors‖, can include interactions between users and other system

elements

19

Systems Engineering processes provide the framework for user

interaction with the system

Designing Extensible Systems

• Extensibility Design Approach1

– Use an up front design that allows for addition

• Can't design everything in advance; provide a framework that allows for

changes.

– Make additions in small incremental steps

– Separate work elements into comprehensible units

• Keep each element at a human level … humans have to read and understand

the system even if it is code generated by a computer

• Software Developments to Make Systems More Extensibility

– Open Systems Architectures

– Net Centric

– SOA

– MOSA

20

1 Kelly, Allen. The Philosophy of Extensible Software, Overload Journal #50, August, 2002

Author Contact Information

Dr. W. David Reese

720-622-2211

Northrop Grumman Electronic Systems

William.reese2@ngc.com

Dr. Conrad Monson

720-622-2231

Northrop Grumman Electronic Systems

Conrad.monson@ngc.com

21

mailto:William.reese2@ngc.com
mailto:Conrad.monson@ngc.com

